skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Annan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Architected materials are innervated with air-filled channels, integrating programmed mechanical behavior, sensing, and actuation. 
    more » « less
  2. Soft robots can be incredibly robust and safe but typically fail to match the strength and precision of rigid robots. This dichotomy between soft and rigid is recently starting to break down, with emerging research interest in hybrid soft-rigid robots. In this work, we draw inspiration from Nature, which achieves the best of both worlds by coupling soft and rigid tissues—like muscle and bone—to produce biological systems capable of both robustness and strength. We present foundational, general-purpose pipelines to simulate and fabricate cable-driven soft-rigid robots with embedded skeletons. We show that robots built using these methods can fluidly mimic biological systems while achieving greater force output and external load resistance than purely soft robots. Finally, we show how our simulation and fabrication pipelines can be leveraged to create more complex robots and do model- based control. 
    more » « less